Radiologic Evaluation of painful shoulder

Amir R. Sadeghifar MD
Associate Prof of orthopedic surgery
Kerman medical university
Suspected instability and labral tear

• Subacute shoulder pain in patients under 35 years of age is often related to sports injuries.

• the most common injuries :
 ➢ posterosuperior labrum
 ➢ supraspinatus / infraspinatus / subscapularis tendon
 ➢ humeral head and glenoid cavity
 ➢ acromioclavicular joint
 ➢ anteroinferior capsulolabral complex
 ➢ biceps tendon
Radiography

- initial imaging test
- humeral and glenoid fractures
- Hill-Sachs
- Bankart lesions
Magnetic resonance arthrography

- method of choice for imaging the labrocapsular structures
- the most accurate imaging modality for sports injuries
- For evaluation of anterior shoulder instability, **MDCT arthrography** has been shown to be more accurate than MR arthrography
- Evaluates the dynamic stabilizers
- Evaluates Static stabilizers
- **MR arthrography** for detection of labral tears: (Sensitivity 88 to 100) and (specificity 88 to 96)
Magnetic resonance arthrography

• The use of abduction and external rotation (ABER) technique increases the sensitivity for labral tears to close to 100 percent.

• **MR arthrography with ABER**: highest sensitivity and specificity for all lesions with the exception of bone sclerosis and enthesophytes.

• **MR arthrography**: indicated in all suspected lesions of the rotator cuff and glenoid labrum in athletes.
Magnetic resonance imaging

- With high field or high resolution and appropriate expertise, MRI is a good alternative to MR arthrography.
- MRI demonstrates bony and soft tissue injuries, including muscle, tendon, and labral tears.
- A meta-analysis of MRI for detection of glenoid labral injury reported sensitivity of 76% and specificity of 87%.
- Evaluation of the capsular structures is limited.
Computed tomography arthrography

• accurate in delineating
 ➢ anatomic derangement
 ➢ glenoid labrum
 ➢ Evaluation of soft tissues is limited
• usually performed only when MR arthrography is contraindicated
• Sensitivity (73 and 76) and specificity (92%) of CT arthrography for labral tears
Adhesive capsulitis

• Diagnosis is based mainly on clinical findings.
• Imaging may be used to exclude intraarticular or rotator cuff abnormalities.
• to guide therapeutic injections.
• Radiography: limited use and is nonspecific.
• Ultrasound: thickening of the coracohumeral ligament and rotator interval synovitis.
• it is not routinely performed.

• Conventional arthrography:
 • is the procedure of choice for the diagnosis and treatment.
• MRI with intravenous contrast
 ➢ signal and thickness abnormalities of the shoulder joint capsule and synovial membrane and thickening of the glenohumeral ligaments.
 ➢ Obliteration of the rotator interval fat pad is characteristic.
osteoarthritis

• **Radiography**:
 - joint space narrowing
 - hypertrophic bone formation (osteophytes)
 - subchondral sclerosis
 - subarticular cysts
Rheumatoid arthritis

• "high-riding" humeral head.

• pseudogout and chronic rotator cuff tear

• The acromioclavicular joint: erosive change of the distal clavicle

• Ultrasonography:
 • the presence of an effusion in the subacromial or subdeltoid bursa and/or the glenohumeral joint

• Tenosynovitis

• synovial proliferation

• bone erosion
Septic arthritis

- **Radiography**:
 - moderate to large joint effusion in the initial phases (inferior displacement of the humeral head)
 - joint space narrowing and erosive changes
- **Ultrasound arthrocentesis**:
 - Shoulder joint aspiration is the procedure of choice.
- **MRI**:
 - highly sensitive but is not specific for the diagnosis of a septic joint
 - combination of bone erosions and bone marrow edema on MRI is highly suggestive
- **Diffusion-weighted imaging (DWI)**: differentiating effusion due to inflammation versus infectious arthritis
 - distinguishing reactive bone edema from osteomyelitis.
Avascular necrosis of bone

• **Radiography**:
 • is not sensitive in the early stages
 • Sclerosis, crescent sign, or humeral head collapse may be visible later

• **MRI**: the most sensitive and specific modality for earliest changes

• **Radionuclide bone scan**: technetium-99m bone scan of the shoulder is not as sensitive as MRI
 • abnormal uptake appears earlier than radiographic changes
Postoperative shoulder pain

• Radiography:
 - initial imaging modality
 - Radiography can confirm the correct position of metallic fixation devices
 - osseous tunnels
 - detect recurrent humeral head dislocation/subluxation
 - tumor recurrence
Postoperative shoulder pain

MRI:
- symptoms of persistent impingement
- suspected reinjury of the rotator cuff and biceps tendon

MR arthrography:
- evaluation of labral pathology
- optimal delineation of the rotator cuff
- capsulolabral structures
- tendon tears

MR arthrography is more accurate than MRI in the detection of partial rotator cuff retears
Shoulder arthroplasty

- **Radiography**:
 - initial modality for evaluation of arthroplasty
 - demonstrates complications of the prosthesis
 - fracture
 - subluxation or dislocation
 - glenoid or humeral component loosening
 - Periprosthetic bone resorption due to particle disease
 - evaluates the integrity of the bone surrounding the prosthesis.

- **Ultrasound**:
 - Patients with shoulder pain after arthroplasty and negative radiographs
 - very accurate in the evaluation of the rotator cuff in patients who have undergone arthroplasty
Shoulder arthroplasty

• **Computed tomography**:
 • valuable for evaluation of soft tissue or bony abnormalities
 - abnormal alignment
 - version alteration
 - articular surface or bone stock deficiency

• **MDCT arthrography**:
 - assessment of the prosthetic and periprosthetic abnormalities
 - rotator cuff and labral-capsular abnormalities
 - Joint fluid can be aspirated during the intraarticular administration of contrast
Shoulder arthroplasty

• MRI:
 • Advances in MAR techniques have led to an increased use of MRI in the evaluation of the painful failed shoulder arthroplasty

➤ integrity of the implant and the supporting soft-tissue envelope
➤ component loosening and implant failure
➤ rotator cuff and deltoid integrity
➤ infection
➤ subtle fracture
➤ nerve pathology.
- **Radionuclide:**
 - technetium-99 bone scan with (SPECT) : choice for suspected joint replacement infection
 - sensitive for identifying the failed joint replacement
 - Combined leukocyte with bone marrow scintigraphy has an accuracy of approximately 90 percent and is the imaging procedure of **choice** for diagnosing **prosthetic joint infection**